Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The...
Array
(
[id_prestablog_news] => 814
[id_shop] => 1
[date] => 2015-11-24 00:00:00
[date_modification] => 2024-02-09 14:15:12
[langues] => ["1","2"]
[actif] => 1
[slide] => 0
[url_redirect] =>
[average_rating] =>
[number_rating] =>
[author_id] => 1
[featured] => 0
[prim_key] => 1591
[id_lang] => 1
[title] => Proteinase-activated receptor 2 modulates OA-related pain- cartilage and bone pa
[paragraph] => Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology
[content] => Authors
Carmen Huesa, Ana C Ortiz, Lynette Dunning, Laura McGavin et al.
Lab
Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, UK
Journal
Annals of the Rheumatic Diseases
Abstract
Objective
Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis.
Methods
OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain.
Results
Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from4 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone.
Conclusions
This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes.
BIOSEB Instruments Used
Dynamic Weight Bearing 2.0 (BIO-DWB-DUAL)
[meta_description] =>
[meta_keywords] => http://ard.bmj.com/content/early/2015/12/23/annrheumdis-2015-208268.full.pdf
[meta_title] =>
[link_rewrite] => proteinase-activated-receptor-2-modulates-oa-related-pain--cartilage-and-bone-pathology
[actif_langue] => 1
[read] => 1614
[count_comments] => 0
[id] => 814
[categories] => Array
(
[70] => Array
(
[id_prestablog_categorie] => 70
[title] => Arthritis & Osteoarthritis
[link_rewrite] => Arthritis-Osteoarthritis
)
[21] => Array
(
[id_prestablog_categorie] => 21
[title] => Joints
[link_rewrite] => Joints
)
[2] => Array
(
[id_prestablog_categorie] => 2
[title] => Publications
[link_rewrite] => publications
)
)
[authors] =>
[paragraph_crop] => Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology
[link_for_unique] => 1
[products_liaison] => Array
(
[1216] => Array
(
[name] => Dynamic Weight Bearing 2.0
[description_short] => The advanced version of our Dynamic Weight Bearing Test for rodents (rats and mice) allows for faster paw identification, based on a video solution taking advantage of the most advanced algorithms of morphologic analysis, weight distribution and postural changes in dynamic conditions. An efficient and advanced alternative to traditional incapacitance tests (i.e. the paw pressure test or the force plate test) for assessing pain sensitivity in your research on analgesia, hyperalgesia and nociception involving rats and mice, including work on osteoarthritis, bone cancer, analgesic substances, Parkinson disease, allodynia...


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/preprod.bioseb.com/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://preprod.bioseb.com/en/pain-spontaneous-pain-postural-deficit/1216-dynamic-weight-bearing-20.html
)
[1877] => Array
(
[name] => Dynamic Weight Bearing 2.0 – Postural Module [Add-on]
[description_short] => Expand Your Analysis with Advanced Postural and Locomotor Calculations
BIOSEB’s renowned Dynamic Weight Bearing (DWB2) system is now more powerful than ever with the addition of the Postural Module. This optional software upgrade extends standard weight-bearing analysis by integrating unique calculations designed to quantify subtle aspects of postural balance, locomotor patterns, and compensatory behaviors.
Developed in collaboration with Dr. Tighilet’s lab from Aix Marseille Université-CNRS, the Postural Module improves your DWB2, providing valuable endpoints for studies on pain, neurology, vestibular dysfunction, and neurodegenerative disorders.


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/preprod.bioseb.com/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://preprod.bioseb.com/en/pain-spontaneous-pain-postural-deficit/1877-dynamic-weight-bearing-20-add-on-postural-module.html
)
)
)
1 Read more