OBJECTIVES: Bone pain resulting from cancer metastases reduces a patient's quality of life. Magnetic Resonance-guided High Intensity Focused...
Array
(
[id_prestablog_news] => 740
[id_shop] => 1
[date] => 2015-09-29 00:00:00
[date_modification] => 2024-02-09 14:15:12
[langues] => ["1","2"]
[actif] => 1
[slide] => 0
[url_redirect] =>
[average_rating] =>
[number_rating] =>
[author_id] => 1
[featured] => 0
[prim_key] => 1445
[id_lang] => 1
[title] => Bone Metastasis Treatment Using Magnetic Resonance-guided High Intensity Focused
[paragraph] => Bone Metastasis Treatment Using Magnetic Resonance-guided High Intensity Focused Ultrasound
[content] => Authors
Yeo SY, Elevelt A, Donato K, van Rietbergen B, Ter Hoeve ND, van Diest PJ, Grüll H
Lab
Eindhoven University of Technology, High Tech Campus, The Netherlands
Journal
Bone
Abstract
OBJECTIVES:
Bone pain resulting from cancer metastases reduces a patient's quality of life. Magnetic Resonance-guided High Intensity Focused Ultrasound (MR-HIFU) is a promising alternative palliative thermal treatment technique for bone metastases that has been tested in a few clinical studies. Here, we describe a comprehensive pre-clinical study to investigate the effects, and efficacy of MR-HIFU ablation for the palliative treatment of osteoblastic bone metastases in rats.
MATERIALS AND METHODS:
Prostate cancer cells (MATLyLu) were injected intra-osseously in Copenhagen rats. Upon detection of pain, as determined with a dynamic weight bearing (DWB) system, a MR-HIFU system was used to thermally ablate the bone region with tumor. Treatment effect and efficacy were assessed using magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT) with technetium-99m medronate (99mTc-MDP), micro-computed tomography (?CT) and histology.
RESULTS:
DWB analysis demonstrated that MR-HIFU-treated animals retained 58.6±20.4% of limb usage as compared to 2.6±6.3% in untreated animals (P=0.003). MR-HIFU delayed tumor specific growth rates (SGR) from 29±6 to 13±5%/day (P<0.001). Untreated animals (316.5±78.9mm3) had a greater accumulation of 99mTc-MDP than HIFU-treated animals (127.0±42.7mm3, P=0.004). The total bone volume increase for untreated and HIFU-treated animals was 15.6±9.6% and 3.0±4.1% (P=0.004), respectively. Histological analysis showed ablation of nerve fibers, tumor, inflammatory and bone cells.
CONCLUSIONS:
Our study provides a detailed characterization of the effects of MR-HIFU treatment on bone metastases, and provides fundamental data, which may motivate and advance its use in the clinical treatment of painful bone metastases with MR-HIFU.
BIOSEB Instruments Used
Dynamic Weight Bearing 2.0 (BIO-DWB-DUAL)
[meta_description] =>
[meta_keywords] => http://www.ncbi.nlm.nih.gov/pubmed/26325304
[meta_title] =>
[link_rewrite] => bone-metastasis-treatment-using-magnetic-resonance-guided-high-intensity-focused-ultrasound
[actif_langue] => 1
[read] => 1821
[count_comments] => 0
[id] => 740
[categories] => Array
(
[90] => Array
(
[id_prestablog_categorie] => 90
[title] => Cancer
[link_rewrite] => Cancer
)
[24] => Array
(
[id_prestablog_categorie] => 24
[title] => Cross-disciplinary subjects
[link_rewrite] => Cross-disciplinary-subjects-
)
[75] => Array
(
[id_prestablog_categorie] => 75
[title] => Fractures
[link_rewrite] => Fractures
)
[2] => Array
(
[id_prestablog_categorie] => 2
[title] => Publications
[link_rewrite] => publications
)
[22] => Array
(
[id_prestablog_categorie] => 22
[title] => Skeletal system
[link_rewrite] => Skeletal-system
)
)
[authors] =>
[paragraph_crop] => Bone Metastasis Treatment Using Magnetic Resonance-guided High Intensity Focused Ultrasound
[link_for_unique] => 1
[products_liaison] => Array
(
[1216] => Array
(
[name] => Dynamic Weight Bearing 2.0
[description_short] => The advanced version of our Dynamic Weight Bearing Test for rodents (rats and mice) allows for faster paw identification, based on a video solution taking advantage of the most advanced algorithms of morphologic analysis, weight distribution and postural changes in dynamic conditions. An efficient and advanced alternative to traditional incapacitance tests (i.e. the paw pressure test or the force plate test) for assessing pain sensitivity in your research on analgesia, hyperalgesia and nociception involving rats and mice, including work on osteoarthritis, bone cancer, analgesic substances, Parkinson disease, allodynia...


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/preprod.bioseb.com/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://preprod.bioseb.com/en/pain-spontaneous-pain-postural-deficit/1216-dynamic-weight-bearing-20.html
)
[1877] => Array
(
[name] => Dynamic Weight Bearing 2.0 – Postural Module [Add-on]
[description_short] => Expand Your Analysis with Advanced Postural and Locomotor Calculations
BIOSEB’s renowned Dynamic Weight Bearing (DWB2) system is now more powerful than ever with the addition of the Postural Module. This optional software upgrade extends standard weight-bearing analysis by integrating unique calculations designed to quantify subtle aspects of postural balance, locomotor patterns, and compensatory behaviors.
Developed in collaboration with Dr. Tighilet’s lab from Aix Marseille Université-CNRS, the Postural Module improves your DWB2, providing valuable endpoints for studies on pain, neurology, vestibular dysfunction, and neurodegenerative disorders.


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/preprod.bioseb.com/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://preprod.bioseb.com/en/pain-spontaneous-pain-postural-deficit/1877-dynamic-weight-bearing-20-add-on-postural-module.html
)
)
)
1 Read more