The advantage of locally applied anesthetics is that they are not associated with the many adverse effects, including addiction liability, of...
Array
(
[id_prestablog_news] => 1458
[id_shop] => 1
[date] => 2021-10-04 00:00:00
[date_modification] => 2024-02-09 14:15:13
[langues] => ["1","2"]
[actif] => 1
[slide] => 0
[url_redirect] =>
[average_rating] =>
[number_rating] =>
[author_id] => 1
[featured] => 0
[prim_key] => 3097
[id_lang] => 1
[title] => Inhibiting endocytosis in CGRP nociceptors attenuates inflammatory pain-like beh
[paragraph] => Inhibiting endocytosis in CGRP nociceptors attenuates inflammatory pain-like behavior
[content] => Authors
R Powell, VA Young, KD Pryce, et al
Lab
University at Buffalo - The State University of New York, Buffalo, NY, USA
Journal
Nature Communications
Abstract
The advantage of locally applied anesthetics is that they are not associated with the many adverse effects, including addiction liability, of systemically administered analgesics. This therapeutic approach has two inherent pitfalls: specificity and a short duration of action. Here, we identified nociceptor endocytosis as a promising target for local, specific, and long-lasting treatment of inflammatory pain. We observed preferential expression of AP2α2, an α-subunit isoform of the AP2 complex, within CGRP+/IB4- nociceptors in rodents and in CGRP+ dorsal root ganglion neurons from a human donor. We utilized genetic and pharmacological approaches to inhibit nociceptor endocytosis demonstrating its role in the development and maintenance of acute and chronic inflammatory pain. One-time injection of an AP2 inhibitor peptide significantly reduced acute and chronic pain-like behaviors and provided prolonged analgesia. We evidenced sexually dimorphic recovery responses to this pharmacological approach highlighting the importance of sex differences in pain development and response to analgesics.
BIOSEB Instruments Used
Dynamic Weight Bearing 2.0 (BIO-DWB-DUAL)
[meta_description] =>
[meta_keywords] => https://doi.org/10.1038/s41467-021-26100-6
[meta_title] =>
[link_rewrite] => inhibiting-endocytosis-in-cgrp-nociceptors-attenuates-inflammatory-pain-like-behavior
[actif_langue] => 1
[read] => 1141
[count_comments] => 0
[id] => 1458
[categories] => Array
(
[28] => Array
(
[id_prestablog_categorie] => 28
[title] => Inflammatory pain
[link_rewrite] => Inflammatory-pain
)
[2] => Array
(
[id_prestablog_categorie] => 2
[title] => Publications
[link_rewrite] => publications
)
)
[authors] =>
[paragraph_crop] => Inhibiting endocytosis in CGRP nociceptors attenuates inflammatory pain-like behavior
[link_for_unique] => 1
[products_liaison] => Array
(
[1216] => Array
(
[name] => Dynamic Weight Bearing 2.0
[description_short] => The advanced version of our Dynamic Weight Bearing Test for rodents (rats and mice) allows for faster paw identification, based on a video solution taking advantage of the most advanced algorithms of morphologic analysis, weight distribution and postural changes in dynamic conditions. An efficient and advanced alternative to traditional incapacitance tests (i.e. the paw pressure test or the force plate test) for assessing pain sensitivity in your research on analgesia, hyperalgesia and nociception involving rats and mice, including work on osteoarthritis, bone cancer, analgesic substances, Parkinson disease, allodynia...


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/preprod.bioseb.com/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://preprod.bioseb.com/en/pain-spontaneous-pain-postural-deficit/1216-dynamic-weight-bearing-20.html
)
[1877] => Array
(
[name] => Dynamic Weight Bearing 2.0 – Postural Module [Add-on]
[description_short] => Expand Your Analysis with Advanced Postural and Locomotor Calculations
BIOSEB’s renowned Dynamic Weight Bearing (DWB2) system is now more powerful than ever with the addition of the Postural Module. This optional software upgrade extends standard weight-bearing analysis by integrating unique calculations designed to quantify subtle aspects of postural balance, locomotor patterns, and compensatory behaviors.
Developed in collaboration with Dr. Tighilet’s lab from Aix Marseille Université-CNRS, the Postural Module improves your DWB2, providing valuable endpoints for studies on pain, neurology, vestibular dysfunction, and neurodegenerative disorders.


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/preprod.bioseb.com/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://preprod.bioseb.com/en/pain-spontaneous-pain-postural-deficit/1877-dynamic-weight-bearing-20-add-on-postural-module.html
)
)
)
1 Read more