Publications

Latest publication 09/01/2015

Early increasing-intensity treadmill exercise reduces neuropathic pain by preven

Activity treatments, such as treadmill exercise, are used to improve functional recovery after nerve injury, parallel to an increase in...

Array
(
    [id_prestablog_news] => 730
    [id_shop] => 1
    [date] => 2015-09-01 00:00:00
    [date_modification] => 2024-02-09 14:15:12
    [langues] => ["1","2"]
    [actif] => 1
    [slide] => 0
    [url_redirect] => 
    [average_rating] => 
    [number_rating] => 
    [author_id] => 1
    [featured] => 0
    [prim_key] => 1427
    [id_lang] => 1
    [title] => Early increasing-intensity treadmill exercise reduces neuropathic pain by preven
    [paragraph] => Early increasing-intensity treadmill exercise reduces neuropathic pain by preventing nociceptor collateral sprouting and disruption of chloride cotransporters homeostasis after peripheral nerve injury
    [content] => 

Authors
López-Álvarez VM, Modol L, Navarro X, Cobianchi S. et al.


Lab
Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain

Journal
Pain

Abstract
Activity treatments, such as treadmill exercise, are used to improve functional recovery after nerve injury, parallel to an increase in neurotrophin levels. However, despite their role in neuronal survival and regeneration, neurotrophins may cause neuronal hyperexcitability that triggers neuropathic pain. In this work, we demonstrate that an early increasing-intensity treadmill exercise (iTR), performed during the first week (iTR1) or during the first 2 weeks (iTR2) after section and suture repair of the rat sciatic nerve, significantly reduced the hyperalgesia developing rapidly in the saphenous nerve territory and later in the sciatic nerve territory after regeneration. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression in sensory neurons and spinal cord was reduced in parallel. iTR prevented the extension of collateral sprouts of saphenous nociceptive calcitonin gene-related peptide fibers within the adjacent denervated skin and reduced NGF expression in the same skin and in the L3 dorsal root ganglia (DRG). Injury also induced Na-K-2Cl cotransporter 1 (NKCC1) upregulation in DRG, and K-Cl cotransporter 2 (KCC2) downregulation in lumbar spinal cord dorsal horn. iTR normalized NKCC1 and boosted KCC2 expression, together with a significant reduction of microgliosis in L3-L5 dorsal horn, and a reduction of BDNF expression in microglia at 1 to 2 weeks postinjury. These data demonstrate that specific activity protocols, such as iTR, can modulate neurotrophins expression after peripheral nerve injury and prevent neuropathic pain by blocking early mechanisms of sensitization such as collateral sprouting and NKCC1/KCC2 disregulation.

BIOSEB Instruments Used
Electronic Von Frey 4 (BIO-EVF4),Electronic Von Frey 5 with embedded camera (BIO-EVF5)

[meta_description] => [meta_keywords] => http://www.ncbi.nlm.nih.gov/pubmed/26090759 [meta_title] => [link_rewrite] => early-increasing-intensity-treadmill-exercise-reduces-neuropathic-pain-by-preventing-nociceptor-collateral-sprouting-and-disruption-of-chloride-cotransporters-homeostasis-after-peripheral-nerve-injury [actif_langue] => 1 [read] => 1198 [count_comments] => 0 [id] => 730 [categories] => Array ( [27] => Array ( [id_prestablog_categorie] => 27 [title] => General pain [link_rewrite] => General-pain ) [29] => Array ( [id_prestablog_categorie] => 29 [title] => Neuropathic pain [link_rewrite] => Neuropathic-pain ) [10] => Array ( [id_prestablog_categorie] => 10 [title] => Pain [link_rewrite] => Pain ) [2] => Array ( [id_prestablog_categorie] => 2 [title] => Publications [link_rewrite] => publications ) ) [authors] => [paragraph_crop] => Early increasing-intensity treadmill exercise reduces neuropathic pain by preventing [...] [link_for_unique] => 1 [products_liaison] => Array ( [1859] => Array ( [name] => Electronic Von Frey - Wireless [description_short] =>

A quick solution to determine the mechanical sensitivity threshold in rodents (mice and rats). Now wireless, to be free from annoying cables!

This precise and easy-to-use electronic instrument is a must-have reference for your research in analgesia, nociception, neuro-pathologies and post-operative pain.

Instrument for ratsInstrument for mice

[thumb] => [img_empty] => /var/www/vhosts/de3310.ispfr.net/preprod.bioseb.com/modules/prestablog/views/img/product_link_white.jpg [image_presente] => 1 [link] => https://preprod.bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1859-electronic-von-frey-4.html ) [1860] => Array ( [name] => Electronic Von Frey 5 with embedded camera [description_short] =>

As an electronic version of the classical Von Frey Filaments esthesiometer (or aesthesiometer), the latest evolution of Bioseb's Electronic Von Frey instrument for determining the mechanical sensitivity threshold in rodents (rats and mice) is a must-have instrument for your reseach on hyperalgesia and allodynia. By measuring and recording the force at which the animal exhibits a paw withdrawal reflex, pathologies related to sensory response and hyper- or hypo-aesthesia can be studied.

The EVF5 includes an embedded camera inside the stimulator handle and a new, dedicated software revolutionizing the experimental process.

Instrument for ratsInstrument for mice

[thumb] => [img_empty] => /var/www/vhosts/de3310.ispfr.net/preprod.bioseb.com/modules/prestablog/views/img/product_link_white.jpg [image_presente] => 1 [link] => https://preprod.bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1860-electronic-von-frey-5-with-embedded-camera.html ) ) ) 1
Read more

Filters

Applications

Dates

<< 1 2 >>